

Seakeeping Analysis of Sailing Yacht Hulls and Centerboard Effect: Comparison between Different Computational Methods

Author: Eng. Giovanni Bailardi

Supervisor: Prof. Dario Boote (UNIGE) External Reviewer: Prof. Pierre Ferrant (Ecole Centrale de Nantes)

Seakeeping Analysis

The seakeeping study is normally used to evaluate the ship response to a generic sea state.

Roll Motion: mesh

- > The domain loses symmetry: nr. cells at least doubled
- The informations don't spread in a favourite direction

Conclusions

- For the seakeeping of complex dynamic systems like the sailing yachts, **RANS** solvers are needed.
- Forward velocity resonance effects that need to be experimentally validated;
- Soft Chines damp mostly the Roll response but its influence decreases increasing the velocity;
- The Lifting Centerboard don't affect the longitudinal motion in heeled condition with head sea (roll fixed) while strongly modifies the rolling behaviour.

41	Giovanni Bailardi - EMSHIP	2/28/2014
Future Deve	elopments	
• Experimental va	lidation at forward speed	
 Modern trend o Class 40); 	f Hard Chined hulls (Volvo, Vendeé Globe, N	∕lini Transat 6.5,
Influence of Bul	b shape on roll damping;	
 Heading Angle + 	6 DoFs: the future of VPP ;	
Aerodynamic + I	Hydrodynamic RANS simulation (America's C	CUP - Oracle USA)
42	Giovanni Bailardi - EMSHIP	2/28/2014

